The m-deficient number of complete bigraphs

Sanjay Roy, Dr. Danappa G.Akka

Abstract

An open problem posed by Aaron and Lewinter in [2] asks whether the m-deficient number interpolates or not. A negative answer of this problem is established in [5]. The counter example in [5] was obtained by characterizing the m-deficient number of complete graph. In this note another counter example was obtained by characterizing the m-deficient number of complete bipartite $K_{n_{1}}, n_{2}, n_{1} \neq n_{2}$ in a similar way.

Index Terms—Key words: Interpolate, deficient number, Degree preserving
Subject classification: 05C99 (Graph Theory).

Introduction

An integer valued function of on the spanning tree set of a graph G is called interpolating if when ever an Integer k satisfies $f(T)<k \delta\left(T^{1}\right)$ for spanning trees T and T^{1}, there exists a spanning tree T^{11} such that $f\left(T^{11}\right)=k$. Thus interpolation may be thought of as a discrete analogue of the intermediate value property. A vertex v of Spanning tree T of a graph G is called degree preserving (DP) if deg ${ }^{T}=\operatorname{deg}^{\mathrm{V}}$. It is shown in [4] that the number of degree preserving vertices interpolate over the spanning tree set of a graph. In [2], the concept of degree pre serving is generalized as follows: A vertex v of spanning tree T of a graph G is called m-deficient if $\operatorname{deg}_{G}-\operatorname{deg}^{V_{T}}=m$. Note that a degree preserving vertex v is O-deficient. An integer k is an m -deficient number of graph G if there is a spanning tree T of G such that $\mathrm{k}=\mathrm{N}(\mathrm{G}, \mathrm{T}, \mathrm{m})$. That is $\mathrm{N}(\mathrm{G}, \mathrm{T}, \mathrm{m})$ denote the k number of m -deficient vertices in T .

The set of deficiencies of spanning trees of a graph G may differ, it is shown in [2] that the sum of the deficiencies of the vertices of any spanning tree of G is invariant. If G has ' n ' vertices and ' e ' edges, the sum of the deficiencies in any spanning tree is $2(e n+1)$. If G is a planar graph with f faces then by using Euler's planar graph formula the sum of deficiencies is $2(f-1)$.

An open problem posed by Aaron and Lewinter in [2] asks whether the m -deficient number interpolates or not. A negative answer of this problem is established in [5]. The counter example in [5] was obtained by characterizing the m-deficient number of complete graphs. In this note another counter example was obtained characterizing the m-deficient number of complete bi partite graphs.

Results

The following Lemma is equivalent to 2.1.10 [3].
Lemma 1. Let $d_{1}, d_{2}, \ldots, d_{n_{1}}, d_{n_{1+1}}, \ldots, d_{n_{1}+n_{2}}$ be the de gree sequence of a graph of order $n_{1}+n_{2}$. Then there is a spanning treeT of the complete bipartite graph $K n_{1}, n_{2}\left(n_{1} \neq n_{2}\right)$ with vertex set $V=\left\{V_{1}, V_{2}, \ldots, V_{n_{1}+1, \ldots .,} V_{n_{1}+}\right.$ n_{1} \} such that deg $\mathrm{vi}^{i}=d_{i}$ for $1 \leq i \leq n_{1}+n_{2}$ if and only if

$$
\sum_{i=1}^{n_{1}+n_{2}} d_{i}=2\left(n_{1}+n_{2}-1\right)
$$

The above Lemma 1 is useful to establish the following Theorem 1.

Theorem1.

Let m, n_{1}, n_{2} be three integers such that $0 \leq m \leq n_{1}+\eta_{2}-2$. Then an integer $k \geq 0$ is an m-deficient number of $\mathrm{K}_{1,}, n_{2}$ if and only if

$$
k \leq--------\quad k \neq n_{1}+n_{2}-3
$$

Proof.

Obverse that $K_{n_{1}}, n_{2}$ is a complete bigraph with degrees $n 1$ and n_{2}. If k is an m-deficient number of n_{1}, n_{2} there is a spanning tree T of $K_{n_{1}}, n_{2}$ such that there exist exactly k vertices in T with degree $n_{i}-m \geq 2, i=1$ or 2 ..
Hence we have $k\left(n_{i}-m\right)+\left(n_{1}+n_{2}-k\right) \leq 2\left(n_{1}+n_{2}\right)-2$.
This means $k\left(n_{i}-m\right)-k \leq\left(n_{1}+n_{2}\right)-2$
That is (1)

$$
k \leq \frac{n_{1}+n_{2}-2}{------1}
$$

If $\mathrm{k}=\mathrm{n}_{1}+\mathrm{n}_{2}-3$ then by (1) and the inequality $\mathrm{n}_{\mathrm{i}}-2 \geq \mathrm{m}$, we deduce $m=n_{i}-2$ or $n_{i}-m=2$. By Lemma 1, thereare posi tive integers $\mathrm{d}_{\mathrm{i}} \neq 2$ satisfying $1 \leq \mathrm{i} \leq \mathrm{n}_{1}+\mathrm{n}_{2}-\mathrm{k}=3$ such that

$$
2\left(n_{1}+n_{2}-3\right)+\sum_{i=1}^{3} d_{i}=2\left(n_{1}+n_{2}-1\right)
$$

$$
3
$$

Hence $\sum \mathrm{d}_{\mathrm{i}}=4$ which is impossible since $\mathrm{d}_{\mathrm{i}} \neq 2$

$$
i=1
$$

for $1 \leq \mathrm{i} \leq 3$

Then consider following two cases

Case 1.

$m=n_{i}-2$

In this case, $\mathrm{k} \leq \mathrm{n}_{1}+\mathrm{n}_{2}-2$ and $\mathrm{k} \neq \mathrm{n}_{1}+\mathrm{n}_{2}$ - 3.The m-deficient vertices in a spanning tree T are precisely the vertices of degree 2 .When $k=n_{1}+n_{2}-2$, a Hamiltonian path of $K_{n 1}, n 2$ has k, m-deficient vertices. When $K \leq n_{1}+n_{2}-4$,
we get $d_{1}=d_{2}=\ldots \ldots \ldots d_{k}=2, d_{k+1}=n_{1}+n_{2}-k-1$ and
$\mathrm{d}_{\mathrm{k}+2}=\mathrm{d}_{\mathrm{k}+3}=\ldots . .=\mathrm{d}_{\mathrm{n}_{1}+\mathrm{n}_{2}=1}$
Obviously

$$
\sum_{i=1}^{n_{1}+n_{2}} d i=2 \quad\left(n_{1}+n_{2}-1\right)
$$

and, in light of Lemma 1, there is a spanning tree T of $K_{n_{1}, n_{2}}$ such that
$k=N\left(K_{n_{1}, n_{2}}, T ; m\right)$. Thus k is an m-deficient number of $K_{n_{1}, n_{2}}$

Case 2.

$m \leq n_{i}-3$
In this case, $k \leq\left(n_{1}+n_{2}-2\right) /\left(n_{i}-m-1\right)<n_{1}+n_{2}-3$
Let $\mathrm{j}=\mathrm{k}\left(\mathrm{n}_{\mathrm{i}}-\mathrm{m}-2\right)+2$ Then $\mathrm{j} \leq \mathrm{n}_{1}+\mathrm{n}_{2}-\mathrm{k}$ let
$d_{1}=\ldots \ldots=d_{k}=\left(n_{i}-m\right) \geq 2, d_{k+1}=\ldots \ldots=d_{k+j}=$ land $d_{k+j+1}=\ldots \ldots . .=$ $\mathrm{d}_{\mathrm{n}_{1}+\mathrm{n}_{2}=2}$.

Then,

$$
\begin{aligned}
\sum_{i=1}^{n_{1}+n_{2}} d_{i} & =k\left(n_{i}-m\right)+j+2\left(n_{1}+n_{2}-k-j\right) \\
& =k\left(n_{i}-m-2\right)-j+2\left(n_{1}+n_{2}\right) \\
& =2\left(n_{1}+n_{2}-1\right)
\end{aligned}
$$

By Lemma 1, k is an m-deficient number of $K_{n_{1}, n_{2}}$ In the following corollary we given an another counter example is established in similar way in [1]

Corollary1.

[1] Let m and n be two integers such that
$0 \leq m \leq n-2$. Then an integer $\mathrm{k} \geq 0$ is an m -deficient number of $K_{n, n}$ if and only if

$$
k \leq----------\quad \text { and } k \neq 2 n-3
$$

Corollary 2.

If $\mathrm{o} \leq \mathrm{m} \leq \mathrm{n}_{\mathrm{i}}$ - 3 then k is an m-deficient number of $\mathrm{K}_{n_{1}, n_{2}}$ if and only if

$$
k \leq \quad \begin{aligned}
& n_{1}+n_{2}-2 \\
& --------1 \\
& n_{i}-m-1
\end{aligned}
$$

Corollary 3.

$$
\begin{aligned}
& \text { If } \mathrm{K}_{n_{1}, n_{2}}=n_{i} \text { if and only if } \\
& 0 \leq k \leq n_{1}+n_{2}-2
\end{aligned}
$$

Corollary 4.

For every pgsitive integer m, the m-deficient number of $\mathrm{Km}_{1}+{ }^{2}, m_{1}+{ }^{2}$ does not interpolate.

References

[1] D.G Akka and Nanda S. Warad, The m-deficient number of graphs, Graph Theory Notes of New York, LVI (2009)15-16,
[2] M. A aron and M. Lewinter, o-deficient vertices of spanning trees, Graph Theory Notes of New York, xxvii : 5, New York A cademy of Sciences (1994) 31-32
[3] J.A Bondy and U.S.R. M urthy, Graph Theory with Applications, Macmillan, London (1976).
[4] M. Lewinter, Interpolation theorem for the number of degree preserving vertices of spanning tree, IEEE Tran. Circuits system, Cas-34 (1987)205.
[5] J.Y uan, A note on a problem of A aron and Lewinter about the m-deficient number of graphs, Graph Theory Notes of New York, xxviii : 9, New York

